Bidirectional low temperature networks

Design methodology based on mathematical optimization

Marco Wirtz, Lukas Kivilip, Peter Remmen and Dirk Müller

OBJECTIVE
- Designing bidirectional low temperature networks
- Selection and sizing of all energy conversion units
- Design of building energy system depends on energy systems in other buildings (due to bidirectional heat exchange)

USE CASE
- Research campus in Germany with 17 buildings
- Demand profiles available in hourly resolution
- Data centers account for 73% of cooling demand

METHODOLOGY
- Formulation of a linear program
- Objective function: Total annualized costs
- Simultaneous sizing of conversion units in all buildings

INPUTS
- Demand profiles
- Technical parameters
- Economic parameters
- Weather data

RESULTS
- Technology selection
- Optimal sizing
- Optimal operation

Superstructure of energy hub
- Heat generation: CHP, gas & electric boiler
- Cold generation: Compression and absorption chiller
- Power generation: Photovoltaics
- Storages: Battery, heat & cold storage

Constraints
- Energy balances in buildings and energy hub
- Formulation allows seasonal operation of storages
- Constant or pre-calculated conversion efficiencies

Figure 3: Geographical map of heating and cooling demands

Figure 4: Comparison of annualized costs of BLTN and reference system

- Compared to individual HVAC systems, a bidirectional low temperature network leads to:
 - 42% lower total annualized costs
 - 56% lower CO₂ emissions

CONCLUSIONS
- Optimization model provides estimation of profitability and generation capacities at an early planning phase
- In use case, large shares of demands are balanced in the system:
 - 32% of demands are balanced within buildings
 - 51% of remaining demands are balanced within the network

Marco Wirtz, M.Sc.
marco.wirtz@eonrc.rwth-aachen.de

RWTH Aachen University | E.ON Energy Research Center
Institute for Energy Efficient Buildings and Indoor Climate
Mathieustraße 10 | 52074 Aachen | Germany
www.ebc.eonrc.rwth-aachen.de