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Abstract

The planning process of district energy systems with thermal networks is a challenging

task. A proven method to include the dynamic behavior of energy systems in the planning

process is mathematical optimization. However, especially for 5th generation district heat-

ing and cooling (5GDHC) networks, design optimization models become complex since they

cover multiple building energy systems, a thermal and electrical network as well as central

heating and cooling units. As a result, optimization models for large districts can become

computationally intractable. To tackle this challenge and to reduce computational times,

decomposition methods can be employed. In this paper, the Dantzig-Wolfe decomposition

is used to transform a mixed-integer linear program into multiple subproblems (for every

building) and a master problem (thermal and electrical network and central units). We

consider a realistic case study based on a 5GDHC system in Germany. In this case study,

we demonstrate that the proposed decomposition approach yields the same results attained

by the original not decomposed problem. In addition, the scalability of the decomposition

approach is investigated. It is found that the computational time of the decomposed formu-

lation increases linearly for a number of buildings up to 100 and a number of design days up

to 25. As a result, the decomposition approach leads to substantially smaller computational

times for larger districts compared to the full model formulation. In general, the study re-

sults show the potential of the Dantzig-Wolfe decomposition to reduce computational times

for design but also operational optimization models for 5GDHC networks.
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1. Introduction

District heating and cooling (DHC) systems have a large potential to support the decar-

bonization of the heating and cooling sector which represents 50% of the final energy con-

sumption in Europe [1]. For urban as well as rural districts, DHC can reduce primary energy

demands as well as local emissions [2]. In the development of district heating technologies, a

trend towards lower network supply temperatures is observed [3]. Modern low-temperature

networks make it possible to reduce heat losses and to integrate renewable low-temperature

heat sources such as waste heat or geothermal energy [4, 5]. On the path towards lower

network temperatures, the concept of 5th generation district heating and cooling (5GDHC)

is receiving an increasing deal of attention in recent years [6, 7]. As discussed by Sulzer et al.

[6], 5GDHC networks are known under various different terms, for example: Bidirectional

low-temperature network ([8, 9, 10, 11]), cold district heating ([12], [13]), anergy network

[14, 15, 16] ambient loop, thermal microgrid, or termonet [17]. The basic concept of 5GDHC

networks is depicted in Fig. 1. The thermal network consists of a warm and a cold pipe with

operating temperatures close to the ambient temperature of the ground (usually between -5

and 20 ◦C) which keeps heat losses to a minimum. Buildings with a heat demand take water

from the warm pipe as heat source for the water-to-water heat pumps, that are installed in

every building. Buildings with a cooling demand feed-in heat either with a chiller or a heat

exchanger (direct cooling). The 5GDHC network therefore makes it possible to exchange

heat between buildings and to reuse waste heat of buildings by other buildings in the district.

1.1. Design models for 5GDHC networks

The interconnection between buildings and the bidirectional energy flows poses chal-

lenges to district energy planners. Planning methods used for conventional district heating

networks fall short since they do not account for time-dependent effects such as the balanc-

ing of heating and cooling demands between buildings. Therefore, recent publications focus
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Figure 1: Principle of 5th generation district heating and cooling systems with heat and cold consumers and

a central supply unit (energy hub). Illustration based on [18].

on developing new planning methods for districts with 5GDHC networks. Some papers use

dynamic network simulations to support the planning process, while other models use math-

ematical optimization: Hering et al. [19] present a mixed-integer quadratically constrained

program (MIQCP) to account not only for energy flows but also temperature constraints of

a 5GDHC network. In their study, the buildings are aggregated in 3 building groups. The

computational times vary strongly depending on the objective function and exceeds 1 hour in

case of CO2 emission minimization. Wirtz et al. [18] present a linear program for the design

of a 5GDHC district considering all building energy systems (BESs) and the energy hub in a

single model. For a case study with 17 buildings, the linear program comprises 530,000 de-

cision variables and is solved in about 1 minute. In addition, mixed-integer linear programs

(MILPs) and MIQCPs for operational optimization have been developed. However, even for

small districts with only a few buildings, the models resulted in high computational times:
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Gabrielli et al. [20] propose a MILP for the operational optimization of a 5GDHC network

at ETH Zurich. For a district with 5 aggregated building blocks, they have to make sub-

stantial simplifications to obtain a model that is computationally tractable. Wirtz et al. [21]

developed a MILP to optimize the annual network temperature profiles for a 5GDHC district

with 17 buildings. For the optimization of a single control interval of 6 h, the computational

time is about 5 minutes. Hering et al. [22] present another MIQCP which also aims at op-

timizing the network temperatures of a 5GDHC network. The computational times range

between 350 and 10,000 s for a time horizon of one day. These studies show that the coupling

of multiple BESs within districts with 5GDHC network leads to high computational times

even for districts with a low number of buildings. High computational times are particularly

problematic in the early phases of district planning, which typically require numerous design

iterations. While model simplifications can drastically reduce the model complexity and

solution times [23], they can only be used to a limited extent. Another proven approach

to reduce computational complexity is to decompose (mixed-integer) linear programs into

multiple smaller subproblems. The subproblems can then be solved separately from each

other which also allows for parallelization of the calculation.

1.2. Dantzig-Wolfe decomposition for energy system models

A widely used approach to decompose large (mixed-integer) linear programs is the Dantzig-

Wolfe decomposition [24]. In this approach, the block-angular structure of the constraint

matrix is exploited to decompose the problem into multiple subproblems and a master prob-

lem that contains the coupling constraints. Dantzig-Wolfe decomposition has been used in a

number of papers for energy system design: Yokoyama et al. [25] apply decomposition to a

single-node energy supply system with a large number of technologies. For every component,

a subproblem is formulated, which determines if the component is installed and its operation

schedule. The master problem combines the subproblems of all components and provides

coupling constraints such as energy balances. Harb et al. [26] solve an operational optimiza-

tion problem of a district energy system by means of a Dantzig-Wolfe decomposition-based

approach. They implement a solution algorithm based on Belov et al. [27] which enables

to include integer variables in the problem formulation. In their study, they show that the
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computational time can be substantially reduced compared to the original (full) model for-

mulation. However, the problem formulation does not consider installation or sizing decisions

of the technologies. Schütz et al. [28] apply the Dantzig-Wolfe decomposition to a district

energy system with a microgrid in which the BESs form the subproblems. The energy bal-

ances of the microgrid represent the master problem which optimizes the electricity exchange

between buildings. While the authors only consider electricity exchange between buildings,

they propose to apply the method also to local heating networks in the future. The following

two recently published papers address design problems that include heat exchange between

decentral energy supply systems: Wakui et al. [29] decompose a large-scale design problem

using Dantzig-Wolfe decomposition. The master problem determines the power and heat

exchange between different energy supply systems and the subproblems optimize the energy

supply system design. In addition, Dantzig-Wolfe decomposition was applied to stochas-

tic design problems in which the uncertainty scenarios are represented by subproblems. In

another paper, Wakui et al. [30] use a similar approach and show that the decomposition

approach leads to lower operational costs compared to the equivalent full formulation since

the decomposed formulation converges faster.

Decomposition techniques can play an instrumental role in alleviating the challenges

associated with model scalability and computational tractability that are usually faced in

studies that address 5GDHC systems. However, to the best of our knowledge, decomposition

approaches to design 5GDHC networks have not been proposed yet. As a consequence,

models that deal with these systems either have to constrain their application to small-scale

system with limited usefulness [21, 22, 20, 19] or rely on substantial model simplifications

[18]. Thus, decomposition approaches have the potential to unlock model development to

address problems related to 5GDHC networks. Hence, in this paper we propose a Dantzig-

Wolfe decomposition-based approach to design 5GDHC networks as an alternative to avoid

directly solving a large scale MILP. The contributions of this study are presented in the

following section.

1.3. Contributions

The contributions of this study are summarized as follows:
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• A Dantzig-Wolfe decomposition-based efficient approach to design district systems with

5GDHC network. The resulting optimization models of the master and subproblems

are described in detail and validated with the corresponding full model formulation.

• A sensitivity analysis is conducted to investigate how the solution times of the Dantzig-

Wolfe decomposition vary with the number of buildings and the temporal resolution

of the model (number of design days).

• Shadow prices for heat, cold (in case of negative heat prices) and electricity, which

result from the master problem, are analyzed within a case study. The shadow prices

can be interpreted as market clearing prices for heat and electricity in the district.

Since pricing models are not trivial for 5GDHC districts with prosumer buildings, the

analysis of shadow prices as a byproduct of the optimization model can help decision

makers to design appropriate pricing models.

1.4. Paper organization

The paper is structured as follows: In Section 2, the full model formulation as well as the

decomposed master and subproblems are presented in detail. The decomposition approach

is applied to a case study which is introduced in Section 3. The results of the case study

as well as a sensitivity analysis are presented and discussed in Section 4. Finally, Section 5

provides conclusions and an outlook on future works.

2. Methods

In this section, the full model formulation as well as the decomposed models are presented.

In both cases, the optimization model determines the optimal energy system configuration in

the connected buildings as well as the energy hub to cover time-varying heating and cooling

demands of the buildings. The optimal system configuration is described by the investment

decision resulting from which technologies are installed and how they are dimensioned. For

this study, in all models a time resolution of ∆t = 1 hour is used.

The model uses technology superstructures from which the optimal technologies are se-

lected. In the following description of the objective function and the model constraints, all
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decision variables of the model are constrained to have non-negative values unless otherwise

stated. In Section 2.1, the full formulation is introduced and in Section 2.2, the proposed

Dantzig-Wolfe decomposition-based approach is described.

2.1. Full model formulation

The full formulation is a MILP that includes the design problem of the energy hub and

the BESs in a single model. In the following, the objective function is introduced first and

thereafter, the model constraints are described in detail.

2.1.1. Objective function

The objective function of the full model formulation represents total annualized costs

Ctot using the definition by the German standard VDI 2067 [31]. The total annualized costs

comprise costs for the equipment of the energy hub and of the BESs (CEH, CBES) as well

as costs for electricity import from the national grid (Cel). Revenues result from electricity

feed-in (Rfeed-in):

minCtot = CEH + CBES + Cel −Rfeed-in (1)

The annualized equipment costs include annualized investment costs as well as operation

and maintenance costs:

CEH =
∑

k∈KEH

(Cinv,k + Com,k) (2)

=
∑

k∈KEH

(cinv,k,EH capk,EH) (ainv,k + fom,k) (3)

Here, the set KEH = {ASHP, PV, ACC, BAT} contains all energy hub technologies and

capk denotes the nominal capacity of each technology k: For the air-source heat pump

and photovoltaic modules, capk refers to the rated electric power (P nom
ASHP,EH, P

nom
PV,EH), and

for energy storages (ACC, BAT), capk is the storage capacity (Scap
ACC,EH, S

cap
BAT,EH). For all

technologies, constant specific investment costs are used cinv,k.

The factor ainv,k denotes the annuity factor and fom,k the annual cost share for mainte-

nance costs. Similarly, the costs of the BESs are:

CBES =
∑
b∈B

∑
k∈KBES

(
cinv,k,BES capk,b + xk,b c

fix
inv,k,BES

)
(ainv,k + fom,k) (4)
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Here, xk,b is a binary variable that indicates if the technology is installed (xk,b = 1) or

not (xk,b = 0) and cfixinv,k,BES describes fix investment costs. The set KBES comprises all

technologies of the BESs, i. e. heat pump, heat storage and electric heater.

The cost for electricity import from the main grid results from the import power Pgrid,d,t

and a time-varying electricity price (pel,d,t).

Cel =
∑
d∈D

wd

∑
t∈T

Pgrid,d,t pel,d,t∆t (5)

Here, wd denotes the number of days represented by the design day d. Revenues from

electricity sales result from the feed-in power Pfeed−in,d,t and the feed-in tariff rfeed−in
el,d,t :

Rfeed−in =
∑
d∈D

wd

∑
t∈T

Pfeed−in,d,t r
feed−in
el,d,t ∆t (6)

2.1.2. Model constraints

The model comprises constraints for the BESs, the energy hub as well as the 5GDHC

network and electrical microgrid.

Building energy system

In the BESs, heat pumps, electric heaters and thermal energy storages provide heat. The

heat pump is connected to the 5GDHC network and increases the temperature of the heat

from the network. The electric heater can cover peak demands and may use low electricity

prices to charge the heat storage. Cooling is provided by a heat exchanger (direct cooling,

DRC) that is thermally connected with the cold pipe of the 5GDHC network. The resulting

superstructure is depicted in Fig. 2.

If a technology is built, the binary installation variable xk,b is forced to 1 using a big-M

constraint with M̂ sufficiently large:

capk,b ≤ xk,b M̂ ∀ b ∈ B, k ∈ KBES (7)

The electricity consumption (Pk,b,d,t) of the heat pump and electric boiler is bound by

their nominal power (P nom
k,b ):

PHP,b,d,t ≤ P nom
HP,b ∀ b ∈ B, d ∈ D, t ∈ T (8)

PEB,b,d,t ≤ P nom
EB,b ∀ b ∈ B, d ∈ D, t ∈ T (9)
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Figure 2: Superstructure of the design problem with all technologies of the energy hub and BESs. The

5GDHC network provides heating and cooling energy for the buildings, the microgrid connects all buildings

with the energy hub. In the decomposition approach, every building forms a subproblem.

Assuming a constant thermal efficiency for electric heaters and a temperature-dependent

coefficient of performance (COP) for the heat pumps, the heat generation Q̇h,k,b,d,t is:

Q̇h,HP,b,d,t = PHP,b,d,t COPHP,b,d,t ∀ b ∈ B, d ∈ D, t ∈ T (10)

Q̇h,EB,b,d,t = PEB,b,d,t ηEB ∀ b ∈ B, d ∈ D, t ∈ T (11)

Minimum part-load constraints ensure that the heat pump’s operation is bound to a

reasonable operation range. For this purpose, the binary variables uHP,b,d,t are introduced to

indicate if the heat pump is operated at a given time step t (uHP,b,d,t = 1) or not (uHP,b,d,t = 0).

If it is operated, the electric demand must be larger than the minimum part-load threshold

PLRHP. This results in the following disjunctive constraints with M̂ being a sufficiently large

number:

PLRHPP
nom
HP,b ≤ PHP,b,d,t + M̂(1− uHP,b,d,t) ∀ b ∈ B, d ∈ D, t ∈ T (12)

PHP,b,d,t ≤ uHP,b,d,tM̂ ∀ b ∈ B, d ∈ D, t ∈ T (13)

Heat storages are modeled as ideally stratified and the storage capacity is denoted by

9



Scap
TES,b. The state of charge STES,b,d,t is bound by the nominal storage capacity which yields:

STES,b,d,t ≤ Scap
TES,b ∀ b ∈ B, d ∈ D, t ∈ T (14)

The energy balance for the heat storage for time steps t > 1 is:

STES,b,d,t = STES,b,d,t−1(1− ϕTES,loss)

+ ηchTESQ̇
ch
h,TES,b,d,t −

Q̇dch
h,TES,b,d,t

ηdchTES

∀ b ∈ B, d ∈ D, t ∈ T (15)

Here, the charging and discharging heat flows are denoted by Q̇ch
h,TES,b and Q̇dch

h,TES,b, respec-

tively. ηchTES and ηdchTES are charging and discharging efficiencies; ϕTES,loss are stand-by heat

losses. Furthermore, it is assumed that the state of charge at the beginning of each design

day is equal to the state of charge at the end of the day (cyclic condition). The state of

charge at the beginning of the design day is the same for all design days and is a decision

variable in the model. The heat balances for the buildings ensure that all demands Q̇h,dem,b,d,t

are met:

Q̇h,HP,b,d,t + Q̇h,EB,b,d,t + Q̇dch
h,TES,b,d,t =

Q̇h,dem,b,d,t + Q̇ch
h,TES,b,d,t ∀ b ∈ B, d ∈ D, t ∈ T (16)

For cooling, it is assumed that all demands Q̇c,dem,b,d,t are met by the heat exchanger (direct

cooling):

Q̇c,dem,b,d,t = Q̇c,DRC,b,d,t ∀ b ∈ B, d ∈ D, t ∈ T (17)

The net thermal demand of the buildings are covered by the 5GDHC network:

Q̇res,BES,b,d,t = Q̇h,HP,b,d,t

(
1− 1

COPHP,b,d,t

)
− Q̇c,DRC,b,d,t ∀ b ∈ B, d ∈ D, t ∈ T (18)

Here, the residual thermal building demand (Q̇res,BES,b,d,t) is a free variable and can take

positive or negative values. The electricity demand of the building is

PBES,b,d,t = PEB,b,d,t + PHP,b,d,t ∀ b ∈ B, d ∈ D, t ∈ T (19)
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and is covered by the electric microgrid.

Thermal network and microgrid

The energy hub supplies the residual thermal demands of all buildings, which are not

balanced within the network, plus thermal losses of the network itself:

Q̇res,EH,d,t =
∑
b∈B

Q̇res,BES,b,d,t + Q̇h,loss,d,t − Q̇c,loss,d,t ∀ d ∈ D, t ∈ T (20)

The microgrid is modelled by a single energy balance aggregating the electricity demands of

all buildings:

Pres,EH,d,t =
∑
b∈B

PBES,b,d,t ∀ d ∈ D, t ∈ T (21)

Energy hub

The superstructure of the energy hub includes a reversible heat pump for generating heat

and cold, a thermal storage, as well as photovoltaics (PV) and a battery. The superstructure

is illustrated in Fig. 2. In addition, electricity can be imported from or fed into the national

electricity grid.

The electricity demand of the air-source heat pump as well as the power generation by

PV modules is limited by their rated electric power:

PASHP,EH,d,t ≤ P nom
ASHP,EH ∀ d ∈ D, t ∈ T (22)

PPV,EH,d,t ≤ P nom
PV,EH ∀ d ∈ D, t ∈ T (23)

The heating (Q̇h,ASHP,EH,d,t) and cooling power (Q̇c,ASHP,EH,d,t) of the air-source heat pump

is given by:

Q̇h,ASHP,EH,d,t = Ph,ASHP,EH,d,t COPh,ASHP,d,t ∀ d ∈ D, t ∈ T (24)

Q̇c,ASHP,EH,d,t = Pc,ASHP,EH,d,t COPc,ASHP,d,t ∀ d ∈ D, t ∈ T (25)

The electricity demand of the air-source heat pump is:

PASHP,EH,d,t = Ph,ASHP,EH,d,t + Pc,ASHP,EH,d,t ∀ d ∈ D, t ∈ T (26)
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The power of the PV modules (PPV,EH,d,t) is constrained by the specific generation power

per kWp (pPV,gen,d,t) multiplied by the capacity of the PV modules:

PPV,EH,d,t ≤ pPV,gen,d,tP
nom
PV,EH ∀ d ∈ D, t ∈ T (27)

The generation profile of PV is calculated prior to the optimization. The PV capacity is

limited by an upper bound which results from the available space for PV installations:

P nom
PV,EH ≤ P nom,max

PV,EH (28)

The energy storages in the energy hub are modeled using an approach by Gabrielli et

al. [32] that allows to consider seasonal operation despite using design days. For this purpose,

the function σ : Y → D, σ(y) = d is introduced which maps 365 days to their respective

design day based on the k-medoids design day clustering. Here, the set Y = {1, 2, ..., 365}
represents all days of the year. The state of charge of the storages at time step t results from

the state of charge of the previous time step (t− 1):

Sk,EH,y,t = Sk,EH,y,t−1 (1− ϕk,EH,loss)

+ ηchk,EHP
ch
k,EH,σ(y),t −

P dch
k,EH,σ(y),t

ηdchk,EH

∀ k ∈ {ACC,BAT} , y ∈ Y, t ∈ T \ {1} (29)

Here, P ch/P dch denotes charging and discharging flows of the respective storage. For the heat

storage, these are Q̇ch
h,ACC,EH/Q̇

dch
h,ACC,EH and for the battery P dch

BAT,EH/P
ch
BAT,EH. The transition

between the first time step of day y and the last time step of the previous day (y − 1) is

modeled by:

Sk,EH,y,1 = Sk,EH,y−1,24 (1− ϕk,EH,loss)

+ ηchk,EHP
ch
k,EH,σ(y),1 −

P dch
k,EH,σ(y),1

ηdchk,EH

∀ k ∈ {ACC,BAT} , y ∈ Y \ {1} (30)

Finally, the cyclic condition ensures the connection between the first time step of the first
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day of the year with the last time step of the 365th day:

Sk,EH,1,1 = Sk,EH,365,24 (1− ϕk,EH,loss)

+ ηchk,EHP
ch
k,EH,σ(1),1 −

P dch
k,EH,σ(1),1

ηdchk,EH

∀ k ∈ {ACC,BAT} (31)

In case of the battery, the storage capacity is limited by a lower bound:

Scap,min
BAT,EH ≤ Scap

BAT,EH (32)

Energy balances

A thermal energy balance ensures that all heating and cooling demands of the 5GDHC

network are covered:

Q̇h,ASHP,EH,d,t + Q̇dch
h,TES,EH,d,t =

Q̇res,EH,d,t − Q̇c,ASHP,EH,d,t + Q̇ch
h,TES,EH,d,t ∀ d ∈ D, t ∈ T (33)

As introduced in the thermal network constraints, Q̇res,EH,d,t describes the heating (positive

value) or cooling (negative value) load of the 5GDHC network. The electricity demands of

the microgrid as well as the air-source heat pump in the energy hub are covered by PV or

electricity imports from the national grid (Pgrid,d,t):

PPV,EH,d,t + Pgrid,d,t + P dch
BAT,EH,d,t =

Pres,EH,d,t + Pfeed−in,d,t + P ch
BAT,EH,d,t ∀ d ∈ D, t ∈ T (34)

Here, P ch
BAT,EH,d,t/P

dch
BAT,EH,d,t and denote the charging and discharging power of the battery,

respectively.

2.2. Dantzig-Wolfe reformulation and Column Generation

In the following sections, the Dantzig-Wolfe reformulation is introduced (Section 2.2.1)

and the resulting master and subproblems are presented in Sections 2.2.2 and 2.2.3, respec-

tively.
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2.2.1. Derivation of master and subproblem

The full formulation of the problem described in Section 2.1 can be written in a compact

form as follows:

min cTx (35)

s.t.



B1 B2 · · · Bn

A1

A2

. . .

An





x0

x1

x2

...

xn


=



b0

b1

b2
...

bn


(36)

where A is the coefficient matrix, x the vector of decision variables, and b the right-hand-

side vector. The coefficient matrix of the full formulation has a block-angular structure: The

design problem of a BES forms almost an isolated problem. The building constraints are

only coupled with the rest of the problem by the decision variables that describe the energy

imports from the electric and thermal grid. A method to solve large-scale optimization

problems with a block-angular structure is the Dantzig-Wolfe decomposition. In this method,

instead of solving the problem in a single solution process, the problem is split into a master

problem and multiple subproblems. The subproblems represent the blocks on the matrix

diagonal Ai and the master problem consists of the coupling constraints

B1x1 +B1x2 + ...+Bnxn = b0. (37)

The main idea of the decomposition method is to generate multiple solutions for the subprob-

lems and to recombine them in order to get an optimal solution for the entire problem. The

Dantzig-Wolfe decomposition is based on a theorem by Minkwoski which states that every

compact convex set is the convex hull of its set of extreme points [33]. For the optimization

problem, this means that all solutions x of the feasible solution space can be described by

a convex combination of the extreme points xj of the full formulation which can be written
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as:

xi =
∑
j

λjxj (38)

∑
j

λj = 1 (39)

λj ≥ 0 (40)

Applying the Minkowski theorem to the original problem in Eq. (36), we obtain the master

problem:

min
n∑

i=1

pi∑
j=1

λi,j(c
T
i xi,j) (41)

pi∑
j=1

λi,j = 1 ∀ i ∈ {1, 2, ..., n} (42)

λi,j ≥ 0 ∀ i, j (43)

This leads to a problem with a large number of variables, i. e. extreme points λi,j. However,

the obtained formulation can be solved using a column generation approach. This means that

not all extreme points (columns) have to be calculated to solve the problem but that extreme

points are generated iteratively as they lead to reduced costs in the objective function of the

master problem. From the dual formulation of the master problem, the reduced costs are

then: 
cT1 x1,j − π1σ

TB1x1,j

cT2 x2,j − π2σ
TB2x2,j

...

cTnxn,j − πnσ
TBnxn,j

 (44)

First, the full master problem is solved for a limited amount of extreme points. With a

solution of this reduced master problem, the dual variables are determined and new columns

can be generated by solving the subproblems and finding an optimal solution for:

min cTi xi − πi − σTBixi (45)

Aixi = bi (46)

xi ≥ 0 (47)
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The subproblems can be solved with low computational effort and the solution process of

multiple suproblems can be parallelized. Every subproblem proposes another column, which

- if it leads to negative reduced costs - is added to the master problem. The algorithm

terminates when the subproblems do not provide any new columns, or alternatively when a

certain convergence criterion is met, such as a maximum number of iterations or a marginal

improvement of the objective function of the master problem. In this study, a maximum

number of iterations as well as a threshold for further improvement in the objective function

of the master problem is used. The solution process of the column generation approach is

depicted in Fig. 3 and is based on studies by Harb et al. [34] and Schütz et al. [28]: In

a first step, the master problem is initialized and solved. The shadow prices are obtained

from the solution of the master problem. Shadow prices are the constraint dual values of a

solution and are therefore also called dual price. With the shadow prices, the subproblems

are set up. The solution of the subproblems are returned to the master problem and the

master problem is solved again. In the master problem, the solutions of the subproblems are

weighted with the continuous weights λi,j. Since the subproblems are mixed-integer linear

programs, feasibility of the master problem is not ensured for continuous weights. Therefore,

in a final step, the master problem is solved with binary weights (λi,j ∈ {0, 1}). Theoretically,
optimality is not guaranteed when the weights are binary and the subproblems contain binary

variables as well. However, previous studies indicated that this solution process leads to near-

optimal solutions [34, 28]. Applied to a district with 5GDHC network and microgrid, the

proposed decomposition approach provides shadow prices for each time step. These shadow

prices generated by the master problem steer the solution of the subproblems and can be

interpreted as the price for heat and electricity for the buildings. In addition, the prices

of the converged solution can then be interpreted as market clearing prices for heat and

electricity.

2.2.2. Master problem

The objective function of the master problem includes investment and maintenance cost

for the technologies of the energy hub (CEH) and BESs (CBES,tot) as well as electricity costs
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Figure 3: Algorithm of the iterative column generation process.

(Cel) and revenues from electricity feed-in Rfeed-in:

minCtot = CEH + CBES,tot + Cel −Rfeed-in (48)

The constraints for the investment and maintenance costs in the energy hub as well as

the electricity cost and revenues for electricity import and feed-in are adopted from the full

model formulation, i. e. Eqs. (2), (5) and (6). The investment and maintenance costs of the

building technologies are summed over all buildings and all weighted proposals:

CBES,tot =
∑
b∈B

∑
p∈P

CBES,b,p λp,b (49)

For the continuous weights, the convexity constraints are added:

λp,b ≤ 1 ∀ p ∈ P , b ∈ B (50)

∑
p∈P

λp,b = 1 ∀ b ∈ B (51)

In addition, the technology constraints (22) – (28) as well as the storage constraints (29) –

(32) of the full formulation are included in the master problem. The master problem also

includes the thermal and electricity balance of the energy hub, i. e. constraints (33) and (34).

However, constraints (20) and (21) of the full formulation are replaced by the corresponding

constraints with the weighting factors:

Q̇res,EH,d,t =
∑
b∈B

∑
p∈P

λp,bQ̇res,BES,p,b,d,t + Q̇h,loss,d,t − Q̇c,loss,d,t

∀ d ∈ D, t ∈ T (52)
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Pres,EH,d,t =
∑
b∈B

∑
p∈P

λp,bPBES,p,b,d,t ∀ d ∈ D, t ∈ T (53)

2.2.3. Subproblems

Each solution of a subproblem represents a proposal p which is added to all subsequent

master problems. Proposals comprise the cost of the building technologies (CBES) as well

as energy import profiles for heat and electricity (Q̇res,BES,d,t and PBES,d,t). The objective

function of the subproblem is:

min (Ctac − σ) (54)

Here, σ is the shadow price derived from Eq. (51) of the previous master problem solution.

The value of σ is individual for each building (subproblem). The total annual costs of the

subproblem consist of the annualized investment and maintenance costs of the technologies

(CBES) as well as costs for heat and electricity imports (Cheat, Cel):

Ctac = CBES + Cheat + Cel (55)

The electricity costs in the subproblems are expressed with the shadow price for electricity

πel,d,t obtained from Eq. (53) of the previous master problem:

Cel =
∑
d∈D

wd

∑
t∈T

PBES,d,tπel,d,t∆t (56)

Likewise, the cost for heat import from the 5GDHC network is:

Cheat =
∑
d∈D

wd

∑
t∈T

Q̇res,BES,d,t πheat,d,t ∆t (57)

Here, πheat,d,t denotes the shadow price for heat imports which is derived from Eq. (52) of

the previous master problem. All additional building constraints of the full formulation (7)

– (19), which are not connected to the coupling constraints or objective function, are added

to each subproblem as well.

2.2.4. Limitations

Due to the low temperatures in 5GDHC networks, heat losses of the network are not

dominant. This means, that the used formulation with static thermal losses and a single
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thermal energy balance is a valid approach in this model. However, for conventional district

heating systems where heat losses have a crucial influence on the performance of the network,

it might be necessary to consider heat losses for every individual pipe section. This will make

the decomposition formulation more complex. As a result, the decomposition approach

presented in this paper cannot be adapted to conventional district heating systems without

modifications.

Moreover, the optimization approach does not differentiate between the network operator

and the building owner. Instead, the model minimizes the total annualized costs of the

heating and cooling supply in the district in general. Although this is a valid assumption for

contracting solutions and is also widely used for design optimization models, the objective

function and thus the optimal solution are affected by the differentiation of which stakeholder

pays for which expenditures.

3. Case study

In this case study, we illustrate our proposed methodology to design a 5GDHC network

located in the district Shamrock Park in the city of Herne, Germany. The district includes

newly built and existing buildings. In total, 25 buildings will be connected to the 5GDHC

network as depicted in Fig. 4. The building stock will comprise 10 offices, 10 residential

buildings, 2 data centers, 2 hotels and 1 nursing home. For this study, slight simplifications to

the case study have been made regarding the considered generation and storage technologies

in the buildings and the energy hub in order to keep the model complexity low and facilitate

the interpretation of the results, with respect to the decomposition method. Therefore in

this study, the energy hub only comprises a reversible air-source heat pump to generate heat

and cold, a thermal storage (accumulator tank), PV modules and a battery. The maximum

photovoltaic capacity is assumed 2 MWp and, due to resiliency considerations, the minimum

battery capacity in the energy hub is 1 MWh. The operating temperatures of the 5GDHC

networks are assumed constant throughout the year at 22 ◦C (warm pipe) and 12 ◦C (cold

pipe). The temperatures affect the COP of the building heat pumps and the reversible air-

source heat pump in the energy hub. The (heating) COP of the heat pump in the energy

hub is calculated using the Carnot efficiency with an exergy efficiency of 0.4. The investment
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costs, technology life times and operation and maintenance costs of the energy conversion

technologies are depicted in Table 1.

Table 1: Economic parameters of energy conversion technologies.

ASHP PV HP (bldgs) EB (bldgs)

Specific investment
(
EUR
kW

)
350 750 350 25

Lifetime (a) 20 20 20 20

Maintenance (% of inv.) 2.5 1.0 2.5 1.0

The generation profiles for PV modules have been simulated prior to the optimization.

For the thermal network, losses are calculated according to DIN EN 13941 [35]. The elec-

tricity price has a time resolution of one hour and is based on EEX spot price data. For the

feed-in tariff, the electricity price is offset by an assumed market spread of 2 EUR-ct/kWh.

For clustering design days, a k-medoids algorithm is employed as presented by Domı́nguez

et al. [36] and implemented by Schütz et al. [37].

Figure 4: The district Shamrock Park in Herne (Germany) comprises 25 buildings and an energy hub.

The heating and cooling demand profiles were simulated using Modelica models created

with TEASER [38] and the domestic hot water demand was simulated using DHWcalc [39].
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The total annual space heating demand is 5.6GWh (peak demand: 2.8MW) and the total

annual cooling demand 3.6GWh (peak demand: 2.9 MW). The domestic hot water demand

is 0.5GWh per year. Fig. 5 shows the cumulated demand profiles for space heating and

cooling. A substantial amount of heating and cooling demands can be balanced in this

district, which is indicated by a demand overlap coefficient (DOC) of 0.30 [40].
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Figure 5: Cumulated space heating (red) and cooling (blue) demands of all buildings.

4. Results

In this section, the results of the case study are presented and discussed. First, the

decomposition approach is validated by comparing its results with the results of the full

formulation in Section 4.1. Then, the optimal energy system obtained with the decomposed

models are presented in detail in Section 4.2. Finally, a parameter and sensitivity analysis

on the district size (number of buildings) and the temporal resolution (number of design

days) is presented in Section 4.3.

4.1. Validation of decomposition approach

In this section, the decomposition approach is validated by comparing its optimization

results with the results of the full model formulation. In order to be able to obtain results

from the full formulation within a reasonable computational time, a reduced district size

is considered in this validation. As a result, only 4 of the 25 buildings are included and

the number of design days is set to 6. For the reduced district size, the full formulation
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comprises 24239 continuous and 588 binary variables. In the decomposed formulation, the

master problem comprises 19564 continuous decision variables and for every subproblem

1178 continuous and 147 binary variables. The solution time (excluding model setup) of the

full formulation is 295 s (MIP gap: 0.1%). In comparison, the sum of the solution times of

all master and subproblems of all iterations is 50.1 s (including the final master problem with

binary weights). In this study, all calculations are performed using an Intel Xeon E5-2667

CPU and Gurobi (version 9.1.1) as solver.

The objective value (total annualized costs) of the full formulation is 179 122EUR and has

a lower bound of 178 944EUR (relaxed problem). The iteration of the last master problem

with continuous weighting variables λi,j results in an objective value of 179 066EUR. As

described in Section 2.2 and depicted in the flow chart in Fig. 3, after the last iteration the

master problem is solved again with binary (instead of continuous) weighting variables λi,j

in order to ensure feasibility of the optimal solution of the decomposed formulation. The

objective value of this final master problem is 179 092EUR and lies within the MIP gap of

the full formulation: It is lower than the objective value of the full formulation (179 122EUR)

but higher than the lower bound (178 944EUR).

The results show the equivalence between the full formulation and the decomposition ap-

proach with respect to the objective function for a district with 4 buildings. The equivalence

of the optimization approaches is also backed up by the results of the sensitivity analysis in

Section 4.3.

4.2. Energy system optimization

In this section, the optimal energy system design for the entire district with 25 buildings

is presented. This solution is obtained with the decomposed model and 12 design days. The

total annualized costs of the system (objective value of the final binary master problem) is

552 746EUR. The total solution time is 3203 s, which comprises a total of 19 s for all relaxed

master problems (i.e. 3 s per solution), 7 s for the final master problem with binary weighting

factors and 3177 s for all subproblems of all iterations (i.e. 21 s per subproblem).
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4.2.1. Optimal system design

The optimal design of the energy hub comprises the reversible heat pump with an electric

capacity of 220 kWel (equivalent to 1040 kWth with a nominal COP of 4.76 according to

manufacturer data). The optimal capacity of the heat storage in the energy hub is 5.5MWh.

In order to generate electricity onsite, PV modules with a peak capacity of 2MWp are

installed. The optimal battery capacity is 1MWh, which is equal to the lower bound of the

minimum battery capacity, c.f. Eq. (32).

As expected, most of the heat demands are covered with heat pumps. As a result, the

total heat pump capacity installed in buildings is 422 kWel (equivalent to 1996MWth). In

addition, electric heaters are installed which cover peak heat demands and offer additional

operational flexibility. The total capacity of electric heaters in all buildings is 491 kWth. The

total capacity of all decentral heat storages is 1.78MWh which equals about 1/3 of the heat

storage capacity in the energy hub.

4.2.2. System operation and shadow prices

In addition to the results of the optimal design, the analysis of the system operation

provides further insights: In Fig. 6, the energy hub operation is depicted for a design day in

winter. In the plot on the top, the heating and cooling balance for the energy hub is shown.

Red areas show the heat generation by the reversible air-source heat pump. The orange and

yellow areas represent heat flows charging and discharging the heat storage. The black line

shows the thermal demand of all buildings that needs to be covered by the energy hub. In

the middle plot, the electric power flows are illustrated: Yellow areas show PV generation,

light gray areas electricity import from the grid and dark gray areas electric power from

the battery. The black line represents the electricity demand of the BESs (heat pumps

and electric heaters) and the green line the electricity demand of the central air-source heat

pump. The plot on the bottom shows the shadow prices for electricity and heat derived

from the master problem. On the depicted winter day, the 5GDHC network has a residual

heat demand of about 1MW, which is mainly covered by the air-source heat pump. In

times with high electricity prices, for example in the morning hours and evening hours, the

heat storage is discharged to reduce the heat pump’s operation. During times with lower
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electricity prices, for example during the afternoon hours, the heat storage is charged using

the air-source heat pump. Other effects which foster the operation of the air-source heat

pump during the afternoon are the higher COPs (which result from the higher ambient air

temperature during the afternoon) and the high PV generation.
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Figure 6: Energy hub operation on a winter day with high heat demands. The heat storage is charged during

the afternoon using PV power, low electricity prices and higher COPs. During the morning and evening

hours, when electricity prices are high, the heat storage is discharged.

An exemplary summer day is illustrated in Fig. 7. Throughout the day, the 5GDHC

network has a residual cooling load. The load is covered by the air-source heat pump (in

cooling mode) and the heat storage. During the afternoon, surplus heat from the network is

stored in the heat storage. In the evening and night hours, the heat storage is cooled down

using the heat pump. An excess of PV generation occurs during the afternoon hours. This

leads to a drop of the electricity price to the level of the feed-in tariff. Due to the residual

cooling load, the shadow prices for heat are negative. For the BESs (subproblems), this

means a negative price for heat or, equivalently, a positive price for cooling energy.

The results of the case study show that a reasonable technology sizing is obtained using

the decomposition approach.
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Figure 7: Operation of the energy hub during a hot summer day with residual cooling load from the 5GDHC

network. The air-source heat pump cools the network and runs throughout the day. Peak cooling loads are

covered with the central heat storage.

4.2.3. Analysis of shadow prices

The shadow price signals for heat (red) and electricity (green) are depicted in Fig. 8

for the design year. In addition, the residual load of the 5GDHC network (after demand

balancing in the network) is depicted in gray. The illustration helps to analyze how heat

prices derived from the optimization and the load situation in the 5GDHC network are

related to each other. For hours with residual heating demand in the network, the heat price

is positive. In contrast, if cooling demands exceed heating demands, the heat price becomes

negative. The heat price ranges between −7.3EUR-ct/kWh and +6.0EUR-ct/kWh. The

electricity price is mainly driven by the import price for electricity from the grid. It ranges

between 6.5EUR-ct/kWh and +14.1EUR-ct/kWh with an average of 11.9EUR-ct/kWh.

The maximum heat prices occur on days with high residual heating demands in winter.

Similarly, the highest negative prices (peak cooling prices) result from a design day with a

high cooling load in summer.

4.3. Runtime and scalability

The main advantage of the decomposition approach is that the computational time for

large districts is substantially lower compared to the full formulation. With a spatial decom-
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Figure 8: Shadow prices for heat and electricity as well as the residual thermal load of the 5GDHC network.

A positive load means a residual heat demand, a negative load means a surplus of waste heat (cooling

demand).

position, for every additional building, one additional subproblem has to be solved in each

iteration. Therefore, the computational time is expected to increase approximately linearly

with the number of buildings. The scalability of the decomposition approach is investigated

in this section in further detail. For the solution of the full model formulations, a MIP gap

of 0.1% was used.

4.3.1. Spatial scalability: Number of buildings

A sensitivity analysis is conducted in which the number of buildings is varied. If the

number of buildings exceeds 25 (the number of buildings in the use case), buildings are

duplicated in order to create districts with more than 25 buildings. In this analysis, 6 design

days are used in the model and a time limit is introduced in order to terminate the full

formulation if the solution exceeds 1 hour. In Fig. 9, the solution time of the decomposition

approach is depicted for districts with up to 100 buildings. As a comparison, the solution

times of the full formulation are depicted in blue. For a district with only 2 buildings, the

solution time of the decomposition approach is 18 s and the solution time for the district

with 100 buildings is 1126 s. The solution times of the full formulation increase progressively:

The solution of the full formulation with 2 buildings is 14 s and with 8 buildings the solution
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time is 642 s. For districts with more than 20 buildings, the solution time exceeds the time

limit of 1 hour. The progressive increase of the solution time is expected since typically,

the time to solve an MILP increases non-linearly with increasing number of variables and

constraints. In contrast, the computational time of the decomposition approach increases

approximately linearly with the number of buildings because for every building in the district,

one subproblem is solved in each iteration and the individual solution time of the subproblems

does not depend on the total number of buildings in the district.

In summary, the results show that for districts with a small number of buildings, the

differences in the computational times between both optimization approaches are small.

However, with increasing number of buildings, the computational times of the full formu-

lation rapidly increase. This can be successfully tackled with the presented decomposition

approach.

4.3.2. Temporal scalability: Number of design days

In addition to the spatial scalability, the sensitivity of the solution times regarding the

temporal resolution is analyzed. In Fig. 10, the solution times for different numbers of design

days are depicted. Here again, a district with a reduced number of 6 buildings is investigated

in order to obtain results for the full formulation within a reasonable time. The solution

time of the decomposition approach (red) increases approximately linearly: For less than 8

design days, the solution time is below 100 s, for 24 design days it increases to 358 s. The

solution times of the full formulation increase progressively with increasing number of design

days: For problems with 10 or more design days, no solution can be obtained within the

time limit of 1 hour.

The equivalence of the optimization approaches is confirmed by an analysis of the objec-

tive values: The objective values for the scenarios, for which a solution of the full formulation

could be obtained within the time limit (up to 8 design days), are listed in Table 2. The rel-

ative deviation between the optimization approaches is in all cases less than 0.07%. Overall,

the sensitivity analysis confirms that when the model complexity increases, the full formu-

lation quickly becomes computationally intractable, while the decomposition model can still

be solved in a reasonable amount of time.
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Figure 9: Solution time of the decomposition approach (red) including all subproblems and master problems

as well as the solution time of the full formulation (blue) using 6 design days. The blue dashed line indicates

the time limit of 1 hour.

Table 2: Objective values of the full formulation and the decomposition approach for a different number of

design days.

Design Full Decomposition Deviation

days formulation (EUR/a) approach (EUR/a)

2 255941 255751 0.07%

4 284538 284546 < 0.01%

6 286001 285811 0.07%

8 278044 277978 0.02%
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Figure 10: Solution times for the decomposed models (red) and the full formulation (blue) for a district with

6 buildings. The time limit of 1 hour for the solution of the full formulation is indicated by the blue dashed

line.
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5. Conclusions and outlook

5.1. Conclusions

In this paper, a decomposition approach for a design optimization model for a case study

with a 5GDHC network is presented that uses a Dantzig-Wolfe decomposition and a column

generation approach. For this purpose, the full model formulation is subdivided into a master

problem (energy hub, microgrid and 5GDHC network) and multiple subproblems (BESs). In

a first step, the equivalence of the original (full) formulation and the decomposed formulation

is validated for a case study. In addition within a sensitivity analysis, it is shown that the

solution time of the decomposed problem formulations increases approximately linearly with

increasing number of buildings and design days. This is a central advantage over the full

formulation which shows a progressive increase of its solution time. Thus, it is shown that

the proposed decomposition method is suitable to solve complex 5GDHC problems more

efficiently with comparable result accuracy.

In addition, the decomposition approach allows to obtain shadow prices for heat and

electricity with an hourly resolution. Shadow prices represent the availability of heat and

electricity in the district. Due to prosumer buildings, which feed heat or electricity into

the respective network, heat and electricity prices can become negative. When there is

a surplus of heat in the district (i.e. the 5GDHC network has a net cooling demand),

the heat price becomes negative and buildings tend to feed in less heat into the network.

The analysis of the shadow prices for heat and electricity helps to find appropriate pricing

models for 5GDHC networks. In summary, the application of decomposition approaches

shows a great potential to reduce computational times of MILP formulations for 5GDHC

systems. Reducing computational times is especially important for the concept phase of

district projects, which is characterized by a large number of planning iterations and therefore

requires fast solving design models.

5.2. Outlook

In future works, the presented decomposition approach should be applied to different

case studies, e. g. with a different set of technologies in the energy hub, to confirm the

applicability of the method and in addition, the Dantzig-Wolfe method can be compared to
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other decomposition methods. Furthermore, the presented decomposition can be applied to

operational optimization models, as presented in [20, 21, 22]. The authors of these studies

experienced in their work high computational times already for districts with a small number

of buildings.

In particular, the concept of shadow prices seems promising for complex operational

optimization of 5GDHC systems: The price profiles for heat and electricity can help to

derive heuristic or rule-based controls for the operation of the technologies in the buildings.

Alternatively, the price signals can be used as input data for a control algorithm based on

machine learning. Here, a central control can reward heat feed-in during times with net

heating demands or punish the feed-in during times with net cooling demands.

6. Acknowledgments

We gratefully acknowledge the financial support by the Federal Ministry for Economic

Affairs and Climate Action (BMWK), promotional reference 03EWR020E (Reallabor der En-

ergiewende: TransUrban.NRW ). In addition, we gratefully acknowledge the financial support

by RWTH Aachen University granting a RWTH Research Ambassador Scholarship for the

research stay of Marco Wirtz at Lawrence Berkeley National Laboratory.

31



7. Nomenclature

Abbreviations

5GDHC 5th generation district heating and cooling

ACC Accumulator tank

ASHP Air-source heat pump

BAT Battery

BES Building energy system

COP Coefficient of performance

DHC District heating and cooling

DOC Demand overlap coefficient

DRC Direct cooling

EB Electric boiler

EH Energy hub

HP Heat pump

MILP Mixed-integer linear program

MIQCP Mixed-integer quadratically constrained program

PV Photovoltaics

TES Thermal energy storage

Indices and Sets

b ∈ B Buildings

d ∈ D Design day

y ∈ Y Day of year

t ∈ T Time step

k ∈ K Technology

Variables
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C Costs

cap Generation/storage capacity

P Electric power

Q Thermal power

R Revenue

S State of charge

u Operation decision (binary)

x Investment decision (binary)

λ Weighting factors

Parameters

∆t Length of time step

η Efficiency

a Annuity factor

M̂ Big-M value

η Efficiency

f Operation & maintenance factor

c Costs

p Energy supply price

PLR Minimum part-load threshold

r feed-in tariff

w Design day weight

ϕ Storage loss factor

π Shadow price (heat/electricity)

σ Shadow price (costs)

Sub- and superscripts
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c cooling

cap capacity

ch/dch charge/discharge

dem demand

el electricity

feed-in electricity feed-in

fix fix investment costs

grid electricity grid

h heating

heat heat

inv investment

loss thermal loss

max maximum

min minimum

nom nominal

om operation & maintenance

res residual

tot total
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